An extended model for ultrasonic-based enhanced oil recovery with experimental validation.
نویسندگان
چکیده
This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields.
منابع مشابه
UTILIZING CONCEPTUAL MODELING IN THE STUDY OF ONE OF THE IRANIAN FRACTURED CARBONATE RESERVOIRS
A typical Iranian carbonate matrix block surrounded by an open fracture was modeled in order to understand the fracture-matrix interaction and realize how to model the interaction best. The modeling was carried out by using a fine-scaled Eclipse model in the single porosity mode (the fractures were explicitly modeled). The model was extended to a stack of 6 matrix blocks to understand block-to-...
متن کاملAn Estimation of Wave Attenuation Factor in Ultrasonic Assisted Gravity Drainage Process
It has been proved that ultrasonic energy can considerably increase the amount of oil recovery in an immiscible displacement process. Although many studies have been performed on investigating the roles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluate wave attenuation parameter, which is an important parameter in the determination of the energy...
متن کاملAn Investigation of Oil Spreading Coefficient in Carbonated Water+ Gas + Oil System: an Experimental Study in an Iranian Asphaltenic Oil Reservoir
To provide supplementary oil recovery after the primary and secondary processes, enhanced oil recovery (EOR) techniques are introduced. Carbonated water injection (CWI) as an EOR method can improve sweep efficiency and the risk of gas leakage. On the other hand, the interfacial tension (IFT) is one of the key factors which can affect fluid displacement during the process of CWI greatly. Therefo...
متن کاملA new investigation on modeling of permeability reduction during CO2 flooding processes in sandstone oil reservoirs
Permeability reduction in oil reservoirs during primary oil recovery and using the enhanced oil recovery methods are complicated problem which most of the oil field in worlds has encountered. In this work, a modified model based on four phase black oil model (oil, water, gas, and asphaltene) was developed to account permeability reduction during CO2 flooding in cylindrical coordinates around a ...
متن کاملOptimization of ultrasonic-assisted extraction of sesame oil
Background & Aim: Sesame is one of the oldest cultivated plants in the world and is one of the oldest oily products used by humans. Sesame oil is an important industrial, oral and medicinal oil. Today, the use of ultrasound has grown significantly due to its effects on food storage and processing. Experimental: In this research, the response level model w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics sonochemistry
دوره 23 شماره
صفحات -
تاریخ انتشار 2015